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sbp Stellio Bottom-Up Analysis (Total: $127/m2)

3

Reflective area of ~48.5 m2

Assumed solar field with 22,239 
heliostats represents 1,067,472 m2

of total aperture area 

~$127/m2 installed cost (±10%)
• ~$7.5M assembly facility
• Base assembly (15.7%)
• Mirrors (13.4%)

Breakdown by category
• 44% purchased components 

(e.g., rivets, mirrors, drives)
• 31% manufactured parts (e.g., 

arms, frame…)

Source: Kurup et al., 2022, NREL/TR-7A40-80482
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Motivation: What is a heliostat performance
improvement worth?

• Technoeconomic analysis is useful for 
assessing the viability of technology 
updates

• Levelized cost of electricity (LCOE) and 
levelized cost of heat (LCOH) are useful 
measures of impact to total plant-life 
costs but offer limited perspective for 
incremental technologies

• We present a measure that recasts 
levelized costs as an equivalent budget 
for technology improvements

• The case study we present a heliostat’s 
installed cost

Heliostats in Ivanpah Solar Field, Unit 1
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Metric calculation: LCOH

We choose LCOH as our chosen measure using the 
following metric to focus on the collection system and 
remove thermal energy storage and power cycle costs:

We assume operating expenses are proportional to the 
capital costs of each subsystem in the plant 

𝐿𝐶𝑂𝐻 = 𝐿𝐶𝑂𝐸 ⋅
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟  
⋅
𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑎𝑛𝑑 𝑠𝑜𝑙𝑎𝑟 𝑓𝑖𝑒𝑙𝑑

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡
 

Scope of the CSP considered in our case study
and metric1

1Image source: Roadmap to Advance Heliostat Technologies for Concentrating Solar-Thermal Power (Technical Report) | OSTI.GOV

https://www.osti.gov/biblio/1888029
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Case study details

Use case: single, central external receiver to supply thermal energy to 
an electric power plant, modeled in System Advisor Model (SAM)1

• We employ the baseline study from the HelioCon Roadmap Report2

as a starting point (Location: Daggett, CA)
• Net power output: 100 MWe
• Surround heliostat field

• Solar multiple: 2.7

• External receiver
• Solar salt (60% NaNO3/40% KNO3)

• Max heat flux – 1 MW/m2

• Hot side temp: 575°C
• Cold side temp: 290°C 

Key Cost and Performance Details: 
1. Installation cost: 

a. $50/m2 (SunShot 2030 target)
b. $140/m2 (Baseline case from Roadmap Report)

2. Optical error: 2.0 mrad
3. Reflectance (includes soiling): 90%
4. Full-plant O&M cost: $66/kW-year
5. Availability: 94%
6. Construction time: 24 months

2Roadmap to Advance Heliostat Technologies for Concentrating Solar-Thermal Power (Technical Report) | OSTI.GOV

1https://sam.nrel.gov

https://www.osti.gov/biblio/1888029
https://sam.nrel.gov/
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Parametric study details

We vary the following parameters by +/- 50%:
• Optical error (single-axis slope equivalent)

• Heliostat installed cost

• Reflectance loss vs. ideal image

• Fixed annual, plant-wide O&M cost

We vary one parameter at a time to start, and we allow a new 
design to be chosen in each instance

2Roadmap to Advance Heliostat Technologies for Concentrating Solar-Thermal Power (Technical Report) | OSTI.GOV

1https://sam.nrel.gov

https://www.osti.gov/biblio/1888029
https://sam.nrel.gov/
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Solution exploration method: Latin hypercube

• The optimization model in SAM includes parameter exploration, but good 
starting points are required to avoid local minima

• Our approach develops a Latin hypercube of designs to ensure sufficient 
exploration of the parameter space

• We vary the following parameters: 
• Design-point DNI (adjusts target number of heliostats in field, can simulate oversizing or 

undersizing)

• Tower height

• Receiver height (we assume diameter is proportional to height)

• Note: SolarPILOT generates the solar field for each case, using the above 
parameters as input
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Start with uniform 
(i.e., probability-equal) 

strata on the [0,1] 
interval, 

…, 

2-dimensional Latin hypercube example (n=3)
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For each stratum and 
dimension generate a 
value (e.g., midpoint) or 

(random) variate

2-dimensional Latin hypercube example (n=3)
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Generate 
(

a random permutation of 
for all 

2-dimensional Latin hypercube example (n=3)
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Assign variates to LHS cells, 
, according to ,

2-dimensional Latin hypercube example (n=3)
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Solutions generated via Latin hypercube (n=101)
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• O&M cost and reflectance losses exhibit a near-1:1 tradeoff regardless of the baseline installed cost

• LCOH is less sensitive to relative changes in capital cost for the $50/m2 case

Parametric results: LCOH summary, $50/m2 and 
$140/m2 scenarios

$50/m2 case $140/m2 case
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• HelioCon is focused on the heliostat’s cost and performance

• Changes to heliostat performance parameters do not happen in a 
vacuum 
• Cost reductions are likely to impact performance

• Conversely, performance improvements come with a change in cost

• EBIC clearly shows this tradeoff in an easy-to-read metric

• EBIC can help set targets or budgets for prospective technology 
changes, and can help with decision-making or prioritization of future 
R&D

Recasting LCOH as Equivalent breakeven installed cost 
(EBIC): Motivation
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Metric calculation: EBIC
Obtain LCOH (𝐿) as an affine function of capital cost (𝐶) via linear regression to get 
terms 𝑎 and 𝑏:

The equivalent installed cost (𝐶′) uses the new LCOH (𝐿′) and the baseline installed 
cost (𝐶) and LCOH (𝐿):

The EBIC obtains the same LCOH as the baseline case under the new conditions: 

𝐿 = 𝑎 ⋅ 𝐶 + 𝑏 

𝐶′ =
 𝐿′ − 𝐿 

𝑎
+ 𝐶 

𝐶∗ = 2 ⋅ 𝐶 − 𝐶′  
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Results: EBIC summary, $50/m2 and $140/m2 scenarios
$50/m2 case $140/m2 case

• For the $140/m2 case, a heliostat with a 25% reduction (improvement) in optical error can sustain 
the same LCOH if the change only increases installed heliostat costs by $10/m2. 
• If it costs more than this to improve heliostat optics, the benefits are outweighed by the heliostat installed cost increase
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• Nearly diagonal lines confirm the approximately 1:1 tradeoff between relative O&M costs and field 
reflectance losses for a wider range of starting points

• Overall impact to EBIC for these measures is limited, indicating performance improvement might 
offset, but cannot replace, installation cost reductions to obtain the $50/m2 goal from current costs

Results: Heatmap of EBIC

0.85                                                              0.95

Field Reflectance (%) 

EB
IC

 ($
/m

2)

99

33
O

&
M

 C
o

st
 (

$
/k

W
e

-y
r)



conceptional design • components • integration • mass production • heliostat feld

• Develop a novel TEA metric that can provide budgetary guidance on 
candidate heliostat improvements

• Demonstrate the usefulness of the metric via a case study using 
candidate heliostat performance improvements and cost measures

• Key insight: it will be difficult for performance improvements to meet 
the SunShot 2030 goal of $50/m2 installed cost alone but they can be 
a contributor to driving down effective heliostat costs

Summary
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Contact: alexander.zolan@nrel.gov

Thank you!
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